國立東華大學招生考試試題第_1頁,共_1頁

招	生學	是 年	度	102	招	生	類	別	碩士班
系	所	所 班 別 資訊工程學系碩士班(甲組、乙組)、資訊工程學系 網路與多媒體科技碩士班							
科			目	離散數學					
注	意	事	項	本考科禁止使用掌上型計算機					

- 1. (15%) The following problems refer to strings in $\{A, B, \ldots, Z\}$.
 - (a) How many different four-letter strings are there?
 - (b) How many four-letter strings are there that begin with A?
 - (c) How many four-letter strings are there that contain exactly two Z's?
- 2. (15%) In a class of 17 students, 3 are math majors. A group of four students is chosen at random.
 - (a) What is the probability that the group has no math majors?
 - (b) What is the probability that the group has at least one math major?
 - (c) What is the probability that the group has exactly two math majors?
- 3. (20%) Consider the following algorithm.

$$x \leftarrow 1$$

for $i \in \{1, 2, \dots, n\}$ do
for $j \in \{1, 2, \dots, n\}$ do
 $x \leftarrow x + 5$
for $k \in \{1, 2, 3, 4, 5\}$ do
 $x \leftarrow x + k + 1$

- (a) Count the number of + operations done by this algorithm.
- (b) What is the value of x after the algorithm finishes?
- 4. (20%) Determine the following recurrence relations:
 - (a) The complete graph K_n on n vertices is the undirected graph that has exactly one edge between every pair of vertices. Find a recurrence relation E(n) for the number of edges in K_n .
 - (b) Let $S(n) = 1^2 + 2^2 + \cdots + n^2$ be the sum of the first n perfect squares. Find a recurrence relation for S(n).
- 5. (15%) Let H(n) be defined as follows.

$$H(n) = \begin{cases} 0 & \text{if } n \le 0. \\ 1 & \text{if } n = 1 \text{ or } n = 2. \\ H(n-1) + H(n-2) - H(n-3) & \text{if } n > 2. \end{cases}$$

Prove that H(2n) = H(2n-1) = n for all $n \ge 1$.

6. (15%) Let X be a finite set, and let P(X) be the power set of X. Let G be the graph whose vertices represent the elements of P(X), where A and B are joined by an edge if $A \cap B = \emptyset$. Similarly, Let H be the graph with a vertex for each element of P(X), but where A and B share an edge if $A \cup B = X$. Prove that G is isomorphic to H.