國立東華大學招生考試試題第/頁,共多頁

招	生气	争 年	度	104	招	生	類	別	碩士班
系	所	班	別	資訊工程學系碩士班(資	二甲:	組)			×.
科	目	名	稱	資料結構					
注	意	事	項	本考科禁止使用掌上型計算	幾				2

- 1 (15%) Given a tree as shown in Figure 1, please answer the following questions:
 - 1.1 What is height of this tree?
 - 1.2 List all leaf nodes?
 - 1.3 List all subtrees of node "Jon"?
 - 1.4 Write down siblings of node "Phil"?
 - 1.5 What is the degree of this tree?

Figure 1 A sample tree structure

2 (5%) Please specify the main purpose of the member function: classNameFunction() based on the given cpp code snippets.

```
className::className(const className& s)
{
    root = classNameFunction(s.root);
}

Node* className:: classNameFunction(Node *argNode)
{
    if (argNode) {
        Node *temp = new Node;
        temp->data = argNode ->data;
        temp->LeftChild = classNameFunction(argNode ->LeftChild);
        temp->RightChild = classNameFunction(argNode ->RightChild);
        return temp;
    }
    else return 0;
}
```

國立東華大學招生考試試題第2頁,共3頁

招	生号	是 年	度	104	招	生	類	別	碩士班
系	所	班	別	資訊工程學系碩士班(資)	二甲絲	组)			
科	目	名	稱	資料結構		li)	82		
注	意	事	項	本考科禁止使用掌上型計算材	幾				

3 (15%) An ADT of Queue is as follows. Please implement Queue<T>:: Push(const T& item) member function using C++ programming language.

```
template < class T >
class Queue
{
public:
    Queue (int queueCapacity = 0);
    bool IsEmpty ( ) const;
    T& Front ( ) const;
    T& Rear ( ) const;
    void Push (const T& item); // Insert item at the rear of the queue void Pop ( ); // Delete the front element of the queue
};
```

- 4 (5%) Declare an array a[20][30], what is the number of elements for a[15][22]?
- 5 (10%) In time complexity analysis for algorithms, there are algorithms with logarithmic time (log n), linear time (n), quadratic time (n²), exponential time (2ⁿ), etc. please illustrate these time complexity using a graph with x-axis representing the number of input, say n= 0, 1, 2, ..., 10 and y-axis representing the computation time.
- 6 Construct the minimum cost spanning tree for the following weighted graph *G*.
 6-1 (10%) Write a Kruskal's algorithm to find the Minimum Spanning Tree of a graph *G*.
 - 6-2 (5%) Write out each weight of the edges added to the tree in the sequence of applying Kruskal's algorithm.

國立東華大學招生考試試題第3頁,共3頁

招生學年度 104 招生類別 碩士班				
系 所 班 別 資訊工程學系碩士班(資工甲組)				
科 目 名 稱 資料結構				
注 意 事 項 本考科禁止使用掌上型計算機	本考科禁止使用掌上型計算機			

7 (15%) Please write down the following sorting of running time used by big-O (ex. O(n)).

	best case	average case	worst case
insertion sort			13 14
Merge sort			
quick sort			
Heap sort			
radix sort			2

8 (10%) Demonstrate the insertion of the keys 12, 5, 88, 128, 17, 10, 33, 45, 27, 14, 64 and 129 into a hash table with collision resolved by linear probing. Make 13 slots in the table, and let the hash function be $h(k) = k \mod 13$.

9 (10%) Stable sorting

- 9-1 What is a stable sorting algorithm?
- 9-2 indicate which of the following sorting algorithm are stable: Insertion sort, bubble sort, quick sort, heap sort, and merge sort.