1. (15\%) The running time of an algorithm A is described by the recurrence $\mathrm{T}(\mathrm{n})=7 \mathrm{~T}(\mathrm{n} / 2)+\mathrm{n}^{2}$. A competing algorithm A^{\prime} has a running time of $T^{\prime}(n)=a T^{\prime}(n / 4)+n^{2}$. What is the largest integer value for a such that A^{\prime} is asymptotically faster than A ?
2. (15\%) Show that worst-case running time of Heapify on a heap of size n is Ω (lgn).
3. (15\%) What is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers ?
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21
Can you generalize your answer to find the optimal code when the frequencies are the first n Fibonacci numbers ?
4. (15\%) Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:
$x 1-x 2 \leq 4, x 1-x 5 \leq 5, x 2-x 4 \leq-6, x 3-x 2 \leq 1, x 4-x 1 \leq 3, x 4-x 5 \leq 10, x 5-x 3 \leq-4, x 5-x 4 \leq-8$
5. (20\%) Let $\mathrm{X}[1 \ldots \mathrm{n}]$ and $\mathrm{Y}[1 . . . \mathrm{n}]$ be two arrays, each containing n numbers already in sorted order. Give an O(lgn)-time algorithm to find the median of all 2 n elements in arrays X and Y .
6. (20\%) Briefly explain these two algorithm design approaches: divide and conquer, dynamic programming. For each algorithm approach, give one example including a problem with an algorithm for the problem. What is the difference between them?
