Ph.D. Qualification Examination

Computation Theory (Nov. 2011)
(1) (20\%) Draw the diagram for a TM that accepts $\left\{0^{n} 1^{m}: n<m\right\}$.
(2) (20\%) A 2-PDA is like a PDA except that it has two stacks. Show that a TM can simulate a $2-\mathrm{PDA}$.
(3) (20\%) Show that, if $P=N P$ then every language $A \in P, A \neq \emptyset$ and $A \neq \Sigma^{*}$, is NP-complete.
(4) (20%) Show that if L is accepted by a nondeterministic TM that always halts (on any sequence of moves), then L is recursive.
(5) (20\%) Is each of the following countable or uncountable?
(a) The set of all functions from \mathbf{N} to $\{0,1\}$.
(b) The set of all functions from $\{0,1\}$ to \mathbf{N}.

