(1) (20%) Is 2™ = O(2M? Is 2" = O(2")?

(2) (20%) Analyze the performance of quicksort in worst-case, best-case and average
case.

(3) (20%) Suppose we use a hash function 4 to hash » distinct keys into an array T of
length m. Assuming simple uniform hashing, what is the expected number of
collisions? More precisely, what is the expected cardinality of {{k, [}: k #* land
h(k)=h(D)} ?

(4) (20%) Write a recursive algorithm with dynamic programming technique to solve
the knapsack problem. (Knapsack problem: A thief robbing a sage finds it filled
with N types of items of varying size and value, but has only a small knapsack of
capacity M to use to carry the goods. The knapsack problem is to find the
combination of items that the thief should choose for the knapsack in order to
maximize the total value of all the stolen items.)

(5) (20%) A depth-first search algorithm is described as follows. Modify this
algorithm to show that a depth-first search of an undirected graph G can be used
to identify the connected components of G, and that the depth-first forest contains
as many trees as G has connected components. More precisely, show how to
modify depth-first search so that each vertex v is assigned an integer label cc[v]
between 1 and &, where k is the number of connected components of G, such that
cc[u] = cc[v] if and only if u and v are in the dame connected component.

Inpat: G = (V, E), directed or undirected. No source vertex given!
Output: 2 fimestamps on each vertex:

* d[v] = discovery time
* flv] = finishing time

Pseudocode: Uses a global timestamp time.

DFS(V,E)
foreachu eV
do color[u] < WRITE
time « 0
foreachu eV
do if color{u] = WHITE
then DFS-VISIT(x)

DFS-VISIT(u)
coloru] <« GRAY b discover u
time < time +1
dlu) « time
foreachv € Adj{u] © explore (4, v)
do if color[v] = WHITE
then DFS-VISIT(v)
color{ul < BLACK
time « time +1
Su) <« time & finish u

