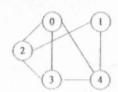

(横書式) 國立東華大學 95 學年度 博士 班招生考試試題

科 目:資料結構 系所別:資訊工程學系


共 3 頁 第 | 頁

本考科禁用計算機

- (3pts)Which is the postfix representation of the infix expression a+(b-c)*d*e/(f+g), assuming normal operator priority?
 - (A) ab+c-d*e*fg+/ (B) abc-*d+e*fg+/ (C) abc-d*e*fg+/+ (D) abcdefg+-**/+
- 2. (3pts)If f(n) = O(g(n)), which statement is true? (A) f(n) = o(g(n)) (B) $f(n) = \Omega(g(n))$ (C) $g(n) = \Omega(f(n))$ (D) $g(n) = \omega(f(n))$
- 3. (3pts)Which of the following statements about binary trees are(is) false?
 - (A) If you use an array to implement a binary tree, the children of a node i is 2i and 2i+1.
 - (B) In the worst case, a search on a binary tree takes O(N) time, where N is the number of nodes in the binary tree.
 - (C) In the worst case, a search on a binary search tree takes O(log₂ N) time, where N is the number of nodes in the binary search tree.
 - (D) The root is biggest one of a binary search tree.
- 4. (3pts) Which of the following statements about heaps are(is) true?
 - (A) Heaps are frequently used to implement priority queues.
 - (B) In the worst case, removing the largest key from a binary Max-heap takes O(log₂n) time.
 - (C) A binary Max-heap is a complex data structure that cannot be implemented with an array.
 - (D) A binary Max-heap is a binary search tree.
- 5. (3pts)Which of the following trees is not a max heap?

6. (3pts)Consider the following graph, which is the adjacency matrix representation of this graph?

20

10

15

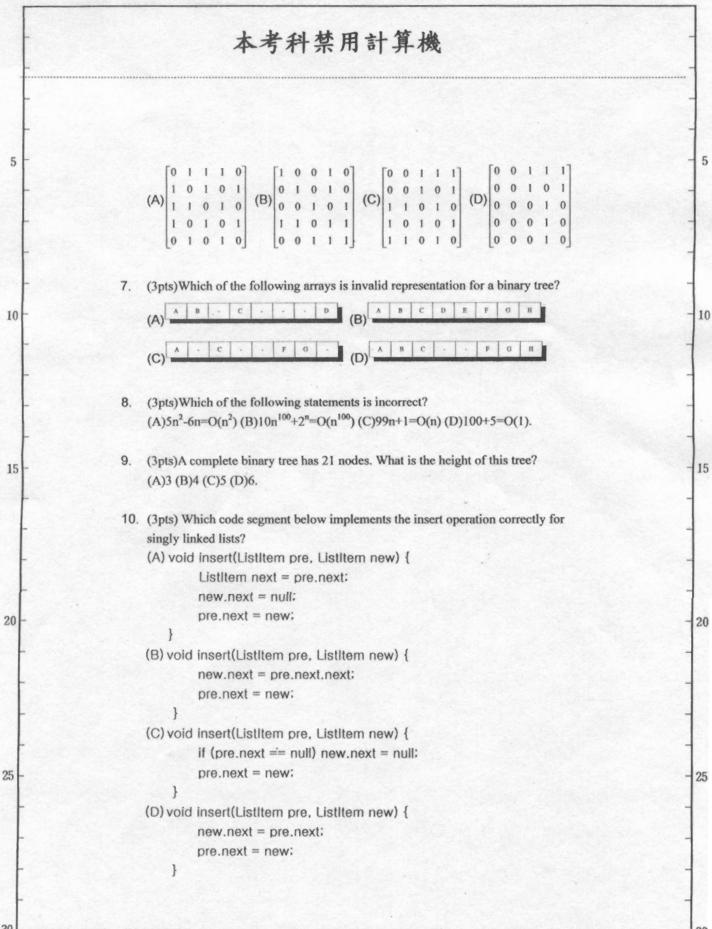
25

30

30

10

15


20

25

(横書式) 國立東華大學 95 學年度 博士 班招生考試試題

科 目:資料結構 系所別:資訊工程學系

共马頁第三頁

(横書式) 國立東華大學 95 學年度 博士 班招生考試試題

科 目:資料結構 系所別:資訊工程學系

共马頁第马頁

10

15

20

25

本考科禁用計算機

(15pts) The following function f is a recursive function that calculates x's
factorial. Please write a non-recursive function calculating exactly the same as
what f calculates.

```
int f(int x) {

if (x == 0) return (1);

if (x == 1) return (1);

return (f(x-1)+f(x-2));
```

10

15

20

25

- 12. (15pts)Which of the following sorting algorithms are stable: insertion sort, merge sort, heap sort, and quick sort? Give a simple scheme that makes any sorting algorithm stable. How much additional time and space does your scheme entail?
- 13. (10pts)Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is $\Omega(nlog_2n)$ by appealing to a recursion tree.
- 14. (15pts)Describe an efficient algorithm that, given an undirected graph G, determines a spanning tree of G whose largest edge weight is minimum over all spanning trees of G.
- 15. (15pts)Demonstrate the insertion of the keys 5, 28, 19, 15, 20, 33, 12, 17, 10 into a hash table which collisions resolved by chaining. Let the table have 9 slots, and let the hash function be $h(k) = k \mod 9$.