招生學年度	九十七	招生類別	碩士班
系 所 班 別	資訊工程學系碩士班		
科目	離散數學		
注意事項	禁用計算機		

Discrete Mathematics

- 1. A positive integer is **perfect** if it equals the sum of its positive divisors other than itself.
 - (a) (5%) Show that 28 is perfect.
 - (b) (10%) Show that $2^{p-1}(2^p-1)$ is a perfect number when 2^p-1 is prime.
- 2. (15%) Let f_k be the k-th Fibonacci number, i.e., $f_k = f_{k-1} + f_{k-2}$ for $k \geq 2$ with initial conditions $f_0 = 0$ and $f_1 = 1$. Let

$$A = \left[\begin{array}{cc} 1 & 1 \\ 1 & 0 \end{array} \right].$$

Show that

$$A^n = \left[\begin{array}{cc} f_{n+1} & f_n \\ f_n & f_{n-1} \end{array} \right]$$

whenever n is a positive integer.

- 3. (15%) Show that if f is a function from S to T where S and T are finite sets and $m = \lceil \frac{|S|}{|T|} \rceil$, then there are at least m elements of S that are mapped to the same value of T. That is, show that there are elements s_1, s_2, \ldots, s_m of S such that $f(s_1) = f(s_2) = \ldots = f(s_m).$
- 4. Let a_n denote the number of bit strings of length n that do not have two consecutive 0's. Let A denote the set of bit strings without two consecutive 0's.
 - (a) (5%) Find a recurrence relation for a_n .
 - (b) (5%) Give initial conditions for a_n .
 - (c) (10%) Solve the recurrence relation for a_n .
 - (d) (10%) Construct a finite-state automaton M that accepts A.
- 5. The intersection graph of a collection of sets A_1, A_2, \ldots, A_n is the graph that has a vertex for each of these sets and has an edge connecting the vertices representing two sets that have a nonempty intersection.
 - (a) (5%) Construct the intersection graph for the following sets: $A_1 = \{0, 2, 4, 6\}$, $A_2 = \{0, 1, 2, 3\}, A_3 = \{1, 3, 5, 7\}, A_4 = \{4, 5, 6, 7\}, \text{ and } A_5 = \{0, 1, 6, 7\}.$
 - (b) (10%) Determine whether this graph have an euler path or not.
- 6. (10%) Simplify the sum-of-products expansion: $xyz + xy\overline{z} + x\overline{y}z + x\overline{y}\overline{z} + \overline{x}yz + \overline{y}z$ $\bar{x}\bar{y}z + \bar{x}\bar{y}\bar{z}$.