共一頁第一頁

國立東華大學招生考試試題

招生學年度	九十八 招生類別 碩士班
系 所 班 別	資訊工程學系
科 目	資料結構
注意事項	本考科禁止使用掌上型計算機

1. (15%) Solve the following recurrent relation under different conditions.

$$T(n) = \begin{cases} b & \text{if } n = 1, \\ a \times T(n/c) + b \times n & \text{if } n > 1. \end{cases}$$
(a) $a < c$ (5%) (b) $a = c$ (5%) (c) $a > c$ (5%)

- 2. (10%) Suppose we are given the pre-order sequence A B C D E F G H I and the in-order sequence D C E B F A H G I of the same binary tree.
- (a) Draw a binary tree defined by such a pair of sequences. (5%)
- (b) Does such a pair of sequences uniquely define a binary tree? (5%)
- 3. (25%) For the following AOE network G = (V, E), please answer the questions below.
- (a) Give numbers 1, 2, ..., 8 to the vertices so that for all edges $(i, j) \in E$, i < j. (5%)
- (b) Obtain the early, e(), and late, l(), start times for each activity. Use the forward-backward approach. (5%)
- (c) What is the earliest time the project can finish? (5%)
- (d) Which activities are critical? (5%)
- (e) Is there any single activity whose speed up would result in a reduction of the project length? (5%)

- 4. (30%) Given input {254, 48, 73, 199, 43, 96, 19, 51} and a hash function h(x)=x mod 10, show the resulting:
- (a) Hash table by use of chaining. (4%)
- (b) Hash table using linear probing. (4%)
- (c) Hash table using quadratic probing. (4%)
- (d) Hash table by use of rehashing with $h_i(x)=(h_{i-1}(x)+3) \mod 10$, $i \ge 2$, where $h_1(x)=h(x)$. (4%)
- (e) Design a hash function, which has 8 bits at input and 4 bits at output, by a bit-XOR operation. Give a figure or equation to show your design (note: the answer is not unique). (7%)
- (f) Redo (b) by your hash function designed in (e) (note: you should transfer the input to an 8-bit vector when use your hash function). (7%)

招生學年度	九十八 招生類別 碩士班
系 所 班 別	資訊工程學系
科目	資料結構
注意事項	本考科禁止使用掌上型計算機

5. (12%) Let $A = \{a_0, a_1, ..., a_{n-1}\}$ be a set of *n* integers such that $a_i < a_{i+1}$ for $0 \le i \le n$ (n-2). Let $P=\{P_0, P_1, ..., P_{k-1}\}$ be a k-partition of A such that $|P_i| \ge 1$ and $\max(P_i) \le 1$ $\min(P_{i+1})$ for $0 \le i \le k-2$, where $\max(P_i)$ and $\min(P_{i+1})$ denote the maximum and minimum element in P_i and P_{i+1} , respectively. Let $\mathbf{B} = \{b_0, b_1, ..., b_{k-1}\}$ be a subset of A with $b_i \le b_{i+1}$ for $0 \le i \le k-2$.

(a) Prove that there at least exists an integer i, $0 \le i \le k-1$, such that $b_i \in P_i$. (8%)

(b) Suppose a set $A=\{1, 2, 5, 8, 10, 12, 13, 15, 20, 22, 25, 29, 30\}$ has 13 elements. Show an example- a partition $P = \{P_0, P_1, ..., P_5\}$ and $B = \{b_0, b_1, ..., b_5\}$, and explain P and B satisfy the description in (a). (4%)

6. (8%) Disprove the following two statements.

(a) $3^n = O(2^n)$. (4%)

(b) $n^3 2^n + 6n^2 3^n = O(n^2 2^n)$. (4%)