Ph.D. Qualification Examination

Algorithms (Oct. 2004)
(1) (30\%) Give asymptotically tight upper bounds for $T(n)$ in each of the following recurrences.
(a) $T(n)=T(n-2)+1$.
(b) $T(n)=2 T(n / 2)+n \lg ^{2} n$.
(c) $T(n)=9 T(n / 4)+n^{2}$.
(d) $T(n)=3 T(n / 2)+n$.
(e) $T(n)=T(n / 2+\sqrt{n})+n$.
(2) (20%) Design an efficient algorithm to find a spanning tree for a connected, weighted, undirected graph $G=(V, E)$ such that the weight of the maximumweight edge in the spanning tree is minimized.
(3) (20\%) Consider a set S of $n \geq 2$ distinct numbers given in unsorted order.
(a) Design an algorithm in $O(n)$ time to determine $x, y \in S$ such that $|x-y| \geq$ $|w-z|$ for all $w, x \in S$.
(b) Design an algorithm in $O(n)$ expected time to determine $x, y \in S$ such that $x+y=Z$, where Z is given, or determine that no two such numbers exist.
(4) (10%) Mergesort will sort five numbers in eight comparisons in the worst case, but, since $\lceil\lg 5!\rceil=7$, it is possible that some other algorithm, requiring at most seven comparisons, exists. Find one.
(5) (20\%) Draw a decision tree for the Mergesort of the 3-element array. Is Mergesort optimal for $n=3$?

