Ph.D. Qualification Examination

Algorithms (April 2009)
(1) (20%) Solve the following recurrences. Assume that $T(c)=1$ for a constant c.
(a) $T(n)=T\left(\frac{n}{2}\right)+\log n$
(b) $T(n)=T(\sqrt{n})+\log n$
(2) (20\%) Define a decision version of the sorting problem. Then, propose a nondeterministic polynomial-time algorithm for this decision sorting problem. What is the running time of your algorithm?
(3) (20%) Let $G=(V, E)$ be any connected undirected graph. A cut vertex of G is a vertex v such that the graph obtained from G by removing v is disconnected. Give an efficient algorithm to find all the cut vertices of G. What is the running time of your algorithm?
(4) (20%) Given a connected graph $G=(V, E)$ and a minimum spanning tree T of G, propose an efficient algorithm to find a second best spanning tree T^{\prime} of G if T^{\prime} exists. What is the running time of your algorithm?
(5) (20\%) Given a text T and two integers l, k, propose an algorithm to find all the patterns P such that $|P| \geq l$ and P appears in T at least k times. What is the running time of your algorithm?

