Ph.D. Qualification Examination Computation Theory (Oct. 2004)

- (1) (25%) Let L_1 and L_2 be two decidable languages. Prove or disprove
 - (a) $L_1 \cup L_2$ is decidable.
 - (b) $L_1 \cap L_2$ is decidable.
 - (c) $\overline{L_1}$ is decidable.
 - (d) L_1L_2 is decidable.
 - (e) $(L_1)^*$ is decidable.
- (2) (25%) Let L_1 and L_2 be two languages over a fixed alphabet Σ with $|\Sigma| = 2$. Justify your answers for the following questions.
 - (a) If L_1 is nonregular and $L_1 \subseteq L_2$, then L_2 is nonregular.
 - (b) $L_1 \subseteq L_2$ and L_2 is nonregular, then L_1 is nonregular.
 - (c) If L_1 is nonregular, then its complement $\overline{L_1}$ is nonregular.
 - (d) L_1 is regular, then $L_1 \cup L_2$ is regular for any language L_2 .
 - (e) L_1 and L_2 are nonregular, then $L_1 \cap L_2$ is nonregular.
- (3) (20%) Design a Turing machine for the language $\{ww^R \mid w \in \{a, b\}^*\}$.
- (4) (30%) Determine whether or not the following languages are context-free. (a) $L = \{a^n b^j a^k b^l \mid n+j \le k+l\}$
 - (b) $L = \{w_1 c w_2 \mid w_1, w_2 \in \{a, b\}^*, w_1 \neq w_2\}$
 - (c) $L = \{a^{nm} \mid n \text{ and } m \text{ are prime numbers}\}$