Ph.D. Qualification Examination
 Computation Theory (Apr. 2005)

(1) (15%) For any string $w=w_{1} w_{2} \ldots w_{n}$, the reverse of w, written w^{R}, is the string w in reverse order, $w_{n} \ldots w_{2} w_{1}$. For any language A, let $A^{R}=\left\{w^{R} \mid w \in A\right\}$. Show that if A is regular, so is A^{R}.
(2) (10\%) Prove or disprove that $B=\left\{a^{2^{n}} \mid n \geq 0\right\}$ is a regular language.
(3) (20%) Determine whether the following languages are context-free or not.
(a) $C_{1}=\left\{x \# y \mid x, y \in\{0,1\}^{*}\right.$ and $\left.x=y\right\}$
(b) $C_{2}=\left\{x \# y \mid x, y \in\{0,1\}^{*}\right.$ and $\left.x \neq y\right\}$
(4) (15%) Show that, if G is a CFG in Chomsky normal form, then for any string $w \in L(G)$ of length $n \geq 1$, exactly $2 n-1$ steps are required for any derivation of w.
(5) (20%) Show that the collection of Turing-recognizable languages is closed under the operations of
(a) union.
(b) concatenation.
(c) star.
(d) intersection.
(6) (20%) Consider the problem of testing whether a Turing machine M on an input w ever attempts to move its head left at any point during its computation on w. Formulate this problem as a language and show that it is decidable.

