Ph.D. Qualification Examination The Design of Algorithms

- 1. (10%) Argue that the solution to the recurrence T(n) = T(n/3) + T(2n/3) + n is $\Omega(n \lg n)$ by appealing to a recursion tree.
- 2. (10%) Argue that the solution to the recurrence $T(n) = 2T(n/4) + \sqrt{n}$ where T(n) is constant for $n \le 2$.
- 3. (10%) Show that the second smallest of n elements can be found with $n + \lceil \lg n \rceil 2$ comparisons in the worst case. (Hint: Also find the smallest element.)
- 4. (15%) Which of the following sorting algorithms are stable: insertion sort, merge sort, heapsort, and quicksort? Give a simple scheme that makes any sorting algorithm stable. How much additional time and space does your scheme entail?
- 5. (15%) Prove that a binary tree is not full cannot correspond to an optimal prefix code.
- 6. (15%) Given an $O(n^2)$ -time algorithm to find the longest monotonically increasing subsequence of a sequence of n numbers.
- 7. (15%) Find a feasible solution or determine that no feasible solution exists for the following system of difference constraints:

$$x_1-x_2 \le 1$$
, $x_1-x_4 \le -4$, $x_2-x_3 \le 2$, $x_2-x_5 \le 7$, $x_2-x_6 \le 5$, $x_3-x_6 \le 10$, $x_4-x_2 \le 2$, $x_5-x_1 \le -1$, $x_5-x_4 \le 3$, $x_6-x_3 \le -8$

- 8. (10%) NP problems.
 - (a) \ How can we prove that a problem is NP-hard?
 - (b) Now can we prove that a problem is NP-complete?