Ph.D. Qualification Examination Algorithms Fall 2010

1. (20\%) Answer the following questions about hash tables:
(a) (10\%) Consider inserting the keys $10,22,31,4,15,28,17,88,59$ into a hash table of length $\mathrm{m}=11$ using open addressing with the auxiliary hash function $\mathrm{h}^{\prime}(\mathrm{k})$ $=\mathrm{k}$ mod m . Illustrate the result of inserting these keys using double hashing with $h_{2}(k)=1+(k \bmod (m-1))$.
(b) (10%) Consider an open-address hash table with uniform hashing. Give upper bounds on the expected number of probes in an unsuccessful search and on the expected number of probes in a successful search when the load factor is $3 / 4$ and when it is $7 / 8$.
2. (10\%) Show how to implement a stack using two queues. Analyze the running time of the stack operations.
3. (20%) We are given n points in the unit circle, $p_{i}=\left(x_{i}, y_{i}\right)$, such that $0<\sqrt{x_{i}^{2}+y_{i}^{2}}<1$, for $i=1,2, \ldots, n$. Suppose that the points are uniformly distributed; that is, the probability of finding a point in any region of the circle is proportional to the area of that region. Design and prove a $\Theta(n)$ expected-time algorithm to sort the n points by their distances $d_{i}=\sqrt{x_{i}^{2}+y_{i}^{2}}$ from the origin (Hint: Design the bucket sizes in Bucket-Sort to reflect the uniform distribution of the points in the unit circle.).
4. (10\%) Explain the following terms:
a. Approximation algorithm
b. NP-complete
c. NP-hard
d. co-NP
e. complexity class P
5. (20\%) Briefly describe Huffman's algorithm. Then, what is an optimal Huffman code for the following set of frequencies, based on the first 8 Fibonacci numbers ?
a:1 b:1 c:2 d:3 e:5 f:8 g:13 h:21

Can you generalize your answer to find the optimal code when the frequencies are the first n Fibonacci numbers?
6. (20\%) Let e be a maximum-weight edge on some cycle of a graph $G=(V, E)$. Prove that there is a minimum spanning tree of $\mathrm{G}=(\mathrm{V}, \mathrm{E}-\mathrm{e})$ that is also a minimum spanning tree of G. That is, there is a minimum of G that does not include e.

