Ph.D. Qualification Examination
 Computation Theory (March 2011)

(1) (15%) Design an NFA to recognize the language of strings over $\{0,1\}$ beginning with a 0 , ending with a 1 , and having an occurrence of 0101 somewhere in every string.
(2) (25\%) Justify your answers (prove or disprove) for the following assertions.
(a) The union of two non-regular sets is always non-regular.
(b) A regular set can have a non-regular subset.
(c) Every regular set has a regular set.
(d) The union of a regular and a non-regular set can be regular.
(e) There is a finite non-regular set.
(3) (20\%) Justify your answers for the following assertions.
(a) Every regular language is also a context-free language.
(b) Every context-free language is also a regular language.
(c) Every context-free language has a regular sublanguage.
(d) Every regular language has a context-free sublanguage.
(4) (40\%) Determine whether it is decidable or not for each of the following questions.
(a) Given a context-free grammar G and two strings s_{1}, s_{2}, does G generate $s_{1} s_{2}$?
(b) Given a context-free grammar G, is the language accepted by G regular?
(c) Does TM M halt on all strings?
(d) Is the language that TM M accepts regular?

