- (20%) Suppose that M is an NFA-Λ accepting L⊆Σ*. Describe how to modify M to obtain an NFA-Λ recognizing *rev*(L)={x^r|x∈L}.
 Note: Λ denotes a null string. Σ* denotes the set of all strings over an alphabet Σ. x^r denotes the reverse of x.
- 2. (20%) Decide whether each statement below is true or false. If it is true, prove it. If not, give a counterexample. All parts refer to languages over the alphabet {0,1}.
 - (a) \cdot If $L_1 \subseteq L_2$ and L_1 is not regular, then L_2 is not regular.
 - (b) \checkmark If L₁ is regular and L₂ is nonregular, then L₁ \cup L₂ is nonregular.
- 3. (20%) Find CFG generating the language $\{a^ib^jc^k|j \neq i+k\}$
- 4. (20%) Use the pumping lemma to show that the given language L = {x ∈ {a, b, c}*|n_a(x) = max{n_b(x), n_c(x)}} is not a CFL. Note: n_a(x), n_b(x), and n_c(x) denote the number of a's, of b's, and of c's in the string x.
- 5. (20%) Show that if L is a recursively enumerable language whose complement is recursively enumerable, then L is recursive.