1. (20\%) Suppose that M is an NFA- Λ accepting $L \subseteq \Sigma^{*}$. Describe how to modify M to obtain an NFA- Λ recognizing $\operatorname{rev}(\mathrm{L})=\left\{x^{r} \mid x \in \mathrm{~L}\right\}$.
Note: Λ denotes a null string. Σ^{*} denotes the set of all strings over an alphabet Σ. x^{r} denotes the reverse of x.
2. (20%) Decide whether each statement below is true or false. If it is true, prove it. If not, give a counterexample. All parts refer to languages over the alphabet $\{0,1\}$.
(a), If $L_{1} \subseteq L_{2}$ and L_{1} is not regular, then L_{2} is not regular.
(b), If L_{1} is regular and L_{2} is nonregular, then $L_{1} \cup L_{2}$ is nonregular.
3. (20\%) Find CFG generating the language $\left\{a^{i} b^{j} c^{k} \mid j \neq i+k\right\}$
4. (20\%) Use the pumping lemma to show that the given language $\mathrm{L}=$ $\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}, \mathrm{c}\}^{*} \mid \mathrm{n}_{\mathrm{a}}(\mathrm{x})=\max \left\{\mathrm{n}_{\mathrm{b}}(\mathrm{x}), \mathrm{n}_{\mathrm{c}}(\mathrm{x})\right\}\right\}$ is not a CFL.
Note: $n_{a}(x), n_{b}(x)$, and $n_{c}(x)$ denote the number of a 's, of b 's, and of c 's in the string x.
5. (20\%) Show that if L is a recursively enumerable language whose complement is recursively enumerable, then L is recursive.
