Ph.D. Qualification Examination

Computation Theory (Oct. 2008)
(1) (15%) Let S be the set of all possible Turing machines. Show that S is countable.
(2) (15\%) Let $P=\left\{L \subseteq \Sigma^{*} \mid \Sigma=\{a, b\}\right\}$. Show that P is uncountable.
(3) (25%) Determine whether the following languages or problems are decidable or not. Justify your answer.
(a) $L_{1}=\{1$ if God exists and 0 otherwise $\}$
(b) $L_{2}=\left\{n \in N \mid x^{n}+y^{n}=z^{n}\right.$ has an integral solution for $\left.(x, y, z)\right\}$
(c) $L_{3}=\{\langle C, G\rangle \mid C$ is a Hamiltonian cycle of $G\}$
(d) Given two DFSMs M_{1} and M_{2}, is $\left|L\left(M_{1}\right)\right|<\left|L\left(M_{2}\right)\right|$?
(e) Given a regular grammar G, is $L(G)$ regular?
(4) (15%) What is a left-linear grammar? Show that languages defined by leftlinear grammars are exactly regular languages.
(5) (15%) Show that the power of DPDAs is unequal to the power of NPDAs.
(6) (15\%) Draw a transition diagram for a Turing machine accepting the language $\left\{x \in\{a, b, c\}^{*} \mid n_{a}(x)=n_{b}(x)=n_{c}(x)\right\}$.

