Arbitrary-State Attribute-Based Encryption with Dynamic Membership

Speaker: Chun-I Fan
Chun-I Fan, National Sun Yat-sen University, Kaohsiung, Taiwan
Vincent Shi-Ming Huang, Industry Technology Research Institute, Hsinchu, Taiwan
He-Ming Ruan, National Taiwan University, Taipei, Taiwan IEEE Transactions on Computers, 2014

Outline

(1) Introduction
(2) Preliminaries
(3) The Proposed Scheme

4 Security Proof
(5) Comparisons
(6) Conclusions

Traditional PKI has some features:

- A sender should get the public key (or the identity) of the receiver in advance.
- The more receivers the system has, the more bandwidth it consumes.
- Broadcast encryption may be able to solve the problem of performance, but the sender needs to have the receiver list.

Attribute-Based Encryption (ABE)

- In 1993, Fiat, and Naor proposed a broadcast encryption system.
- In 2001, Boneh and Franklin proposed an identity-based encryption (IBE) scheme based on Weil pairing, and enhanced it by the technique from Fujisaki and Okamoto.
- In 2005, Sahai and Waters proposed a new type of IBE, fuzzy IBE, which was the prototype of $A B E$.
- In 2007, Baek, Susilo, and Zhou presented another fuzzy IBE with new construction.

Our Contribution

- Our scheme is the first one which supports dynamic membership and arbitrary-state attributes.
- It is CCA secure under a standard model (without using random oracles).
- Expandability. A new user is able to enroll in the system.
- Renewability. Each user's private key, attribute set, and attribute values can be renewed and the old private keys should be useless to those ciphertexts which are encrypted after these parameters associated with the user are renewed.
- Revocability. A user's private key can be revoked and the revoked private keys should be useless to those ciphertexts which are encrypted after these private keys are revoked.
- Independence. When a user's leaving or attribute updating occurs, the other users are not required to interact with KGC (Key Generation Center) to renew their private keys.

Backgrounds

Lagrange Interpolation

Lagrange interpolating polynomial is a polynomial p of degree not greater than $(n-1)$ that passes through n points $\left(x_{i}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$, and is given by

$$
p(x)=\sum_{j=1}^{n} p_{j}(x), \text { where } p_{j}(x)=y_{j} \prod_{k=i, \ldots, n, k \neq j} \frac{x-x_{k}}{x_{j}-x_{k}}
$$

For $i \in \mathbb{Z}$ and $S \subseteq \mathbb{Z}$, the Lagrange coefficient $\Delta_{i, S}(x)$ is defined as

$$
\Delta_{i, S}(x)=\prod_{\forall j \in S, j \neq i} \frac{x-j}{i-j}
$$

Backgrounds

Bilinear Mapping

Let G_{0}, G_{1}, and G_{T} be three cyclic groups of prime order q. A bilinear mapping e : $G_{0} \times G_{1} \rightarrow G_{T}$ satisfies the following properties:

- Bilinearity: $e(a P, b Q)=e(P, Q)^{a b}, \forall P \in G_{0}, Q \in G_{1}$ and $a, b \in \mathbb{Z}_{q}$.
- Non-Degeneracy: The mapping does not map all pairs in $G_{0} \times G_{1}$ to the identity in G_{T}.
- Computability: There is an efficient algorithm to compute $e(P, Q), \forall P \in G_{0}, Q \in G_{1}$.

Backgrounds

Decisional Bilinear Diffie-Hellman Problem

Let G_{0}, G_{1}, and G_{T} be three cyclic groups of prime order q, P and Q be arbitrarily-chosen generators of G_{0} and G_{1}, respectively, and $e: G_{0} \times G_{1} \rightarrow G_{T}$ be a bilinear mapping. Given $(P, Q, a P, b P, c P, a Q, b Q, c Q, Z)$ for some $a, b, c \in \mathbb{Z}_{q}^{*}$ and $Z \in_{R}\left\{e(P, Q)^{a b c}, Y \in_{R} G_{T}\right\}$, decide if $Z=e(P, Q)^{a b c}$.

Definition 1 (The DBDH Assumption)

We define that an adversary \mathcal{C} with an output $b^{\prime} \in\{0,1\}$ has advantage ϵ^{\prime} in solving the DBDH problem if

$$
\begin{aligned}
& \mid \operatorname{Pr}\left[\mathcal{C}\left(P, Q, a P, b P, c P, a Q, b Q, c Q, e(P, Q)^{a b c}\right)=1\right]- \\
& \quad \operatorname{Pr}[\mathcal{C}(P, Q, a P, b P, c P, a Q, b Q, c Q, Z)=1] \mid \geq \epsilon^{\prime}
\end{aligned}
$$

where the probability is over the random choice of $a, b, c \in \mathbb{Z}_{q}^{*}$ and the random choice $Z \in\left\{e(P, Q)^{a b c}, Y \in_{R} G_{T}\right\}$.

An Access Tree

The Proposed Scheme

Overview: Enrollment, Encryption, Decryption

The Proposed Scheme

- Step 1: G_{0}, G_{1}, G_{T} with prime order $q, e: G_{0} \times G_{1} \rightarrow G_{T}$, generator P of G_{0}, generator Q of G_{1}
- Step 2: $\alpha, \beta \in R \mathbb{Z}_{q}^{*}$ and $H:\{0,1\}^{*} \rightarrow \mathbb{Z}_{q}^{*}$.
- Step 3: Generate two default users:
(1) $\mathcal{U}=\{0,1\},\left\{v_{i, j}\right\}_{\forall i \in \mathcal{U}, j \in A} \in_{R} \mathbb{Z}_{q}^{*},\left\{t_{i}\right\}_{\forall i \in \mathcal{U}} \in_{R} \mathbb{Z}_{q}^{*}$.

$$
\left\{\begin{array}{l}
\left\{V_{j}=\left(\prod_{\forall i \in \mathcal{U}} v_{i, j}\right) Q\right\}_{\forall j \in A} \\
\left\{\overline{v_{i, j}}=t_{i} \prod_{\forall k \neq i, k \in \mathcal{U}} v_{k, j}^{-1}+v_{i, j} \bmod q\right\}_{\forall i \in \mathcal{U}, \forall j \in A}
\end{array}\right.
$$

- Step 4: Public parameter $P K=\left(G_{0}, G_{1}, G_{T}, e, H, P, Q\right.$, $\left.U=e(P, Q)^{\alpha(\beta-1)}, e(P, Q)^{\alpha \beta},\left\{V_{j},\left\{\overline{v_{i, j}}\right\}_{\forall i \in \mathcal{U}}\right\}_{\forall j \in A}, \mathbb{V}\right)$ The master key of KGC is $M K=\alpha Q$.

The asymmetric setting of e can be implemented by BN-Curve which is with faster software implementations.

- Step 1: $r_{i}, t_{i},\left\{v_{i, j}\right\}_{\forall j \in A},\left\{r_{i, j}\right\}_{\forall j \in A_{i}} \in R \mathbb{Z}_{q}^{*}$
- Step 2: $\mathcal{U}=\mathcal{U} \cup\{i\}$
- Step 3:

$$
\left\{\begin{array}{l}
\left\{h_{i, j}=H\left(m_{i, j}\right)\right\}_{\forall j \in A_{i}} \\
\left\{V_{j}=v_{i, j} V_{j}\right\}_{\forall j \in A} \\
\left\{\overline{v_{i, j}}=t_{i} \prod_{\forall k \neq i, k \in \mathcal{U}} v_{k, j}^{-1}+v_{i, j} \bmod q\right\}_{\forall j \in A} \\
\left\{\overline{v_{k, j}}=\left(\overline{v_{k, j}}-v_{k, j}\right) v_{i, j}^{-1}+v_{k, j} \bmod q\right\}_{\forall k \neq i, k \in \mathcal{U}, \forall j \in A}
\end{array}\right.
$$

- Step 4: Generate user i 's private key $\mathcal{D}_{i}=$

$$
\left\{\begin{array}{l}
D_{i}=\alpha Q+t_{i} r_{i} Q \\
\left\{D_{i, j}=v_{i, j}^{-1}\left(r_{i} P+r_{i, j} h_{i, j} P\right)\right\}_{\forall j \in A_{i}} \\
\left\{D_{i, j}^{\prime}=t_{i} r_{i, j} P\right\}_{\forall j \in A_{i}} \\
\left\{D_{i, j}^{\prime \prime}=r_{i} P+r_{i, j} h_{i, j} P\right\}_{\forall j \in A_{i}}
\end{array}\right.
$$

- Step 5: Increase \mathbb{V} and update $\left(\left\{V_{j},\left\{\overline{v_{i, j}}\right\}_{\forall i \in \mathcal{U}}\right\}_{\forall j \in A}, \mathbb{V}\right)$ in PK.

The Proposed Scheme

KGC increases \mathbb{V} and updates $P K$ as follows:

$$
\left\{\begin{array}{l}
\left\{V_{j}=v_{u, j}^{-1} V_{j}\right\}_{\forall j \in A} \\
\left\{\overline{v_{k, j}}=\left(\overline{v_{k, j}}-v_{k, j}\right) v_{u, j}+v_{k, j} \bmod q\right\}_{\forall k \neq u, k \in \mathcal{U}, \forall j \in A}
\end{array}\right.
$$

Finally, it sets $\mathcal{U}=\mathcal{U} \backslash\{u\}$ and deletes $\left\{\overline{v_{u, j}}\right\}_{\forall j \in A}$ in $P K$.

The Proposed Scheme

- Step 1: $v_{i, j}^{\prime}, r_{i}^{\prime}, r_{i, j}^{\prime} \in_{R} \mathbb{Z}_{q}^{*}$
- Step 2: $h_{i, j}^{\prime}=H\left(m_{i, j}^{\prime}\right)$
- Step 3: Give

$$
\left\{\begin{array}{l}
D_{i}=\alpha Q+t_{i} r_{i}^{\prime} Q \\
D_{i, j}=v_{i, j}^{\prime-1}\left(r_{i}^{\prime} P+r_{i, j}^{\prime} h_{i, j}^{\prime} P\right) \\
\left\{D_{i, k}=v_{i, k}^{-1}\left(r_{i}^{\prime} P+r_{i, k} h_{i, k} P\right)\right\}_{\forall k \in A_{i} \backslash\{j\}} \\
D_{i, j}^{\prime}=t_{i} r_{i, j}^{\prime} P \\
D_{i, j}^{\prime \prime}=r_{i}^{\prime} P+r_{i, j}^{\prime} h_{i, j}^{\prime} P \\
\left.\left\{D_{i, k}^{\prime \prime}=r_{i}^{\prime} P+r_{i, k} h_{i, k} P\right)\right\}_{\forall k \in A_{i} \backslash\{j\}}
\end{array}\right.
$$

to user i.

- Step 4: Increase \mathbb{V} and update $P K$.

$$
\left\{\begin{array}{l}
V_{j}=v_{i, j}^{-1} v_{i, j}^{\prime} V_{j} \\
\overline{v_{i, j}}=\left(\overline{v_{i, j}}-v_{i, j}\right)+v_{i, j}^{\prime} \bmod q \\
\overline{v_{k, j}}=\left(\overline{v_{k, j}}-v_{k, j}\right) v_{i, j}^{\prime} v_{i, j}^{\prime-1}+v_{k, j} \bmod q, \forall k \in \mathcal{U} \backslash\{i\}
\end{array}\right.
$$

The Proposed Scheme Encryption($\mathcal{T}, M, P K)$

Access tree structure construction.

- For the root node R :
(1) $s \in_{R} \mathbb{Z}_{q}^{*}$ and k_{R} is the threshold value of R.
(2) Randomly choose a polynomial q_{R} of degree $d_{R}=k_{R}-1$ with $q_{R}(0)=s$.
(3) Assign a unique index number x for each child of R.
- For each internal node N other than R :
(1) k_{N} is the threshold value of N.
(2) Randomly choose a polynomial q_{N} of degree $d_{N}=k_{N}-1$ with $q_{N}(0)=q_{\text {parent }(N)}($ index $(N))$.
(3) Assign a unique index number x for each child of node N.
- For each leaf node N_{L} : Randomly choose a polynomial $q_{N_{L}}$ of degree 0 with $q_{N_{L}}(0)=q_{\text {parent }\left(N_{L}\right)}\left(\operatorname{index}\left(N_{L}\right)\right)$.

The Proposed Scheme

Encryption

Ciphertext generation: $K \in_{R} G_{T}$ and $\mathcal{N}_{L}=\{$ the leaves of $\mathcal{T}\}$.
The ciphertext is

$$
\begin{aligned}
C T= & \left(\mathcal{T}, \tilde{C}=e(P, Q)^{\alpha \beta s} K, C=s P, C^{\prime}=U^{s}\right. \\
& \bar{M}=E_{K}(M), C_{r}=H(K \| \bar{M}) P \\
& \left\{C_{N}=q_{N}(0) V_{a t t(N)}, C_{N}^{\prime}=q_{N}(0) H(\operatorname{val}(N)) Q,\right. \\
& \left.\left.\left\{\overline{v_{i, a t t(N)}}\right\}_{\forall i \in \mathcal{U}}\right\}_{\forall N \in \mathcal{N}_{L}}, \mathbb{V}\right) .
\end{aligned}
$$

$\left\{\left\{\overline{v_{i, \operatorname{att}(N)}}\right\}_{\forall i \in \mathcal{U}}\right\}_{\forall N \in \mathcal{N}_{L}}$ can be excluded from the ciphertext.

The Proposed Scheme

DecryptNode $\left(C T, \mathcal{D}_{i}, N\right)$: Let $V_{j}=v_{j} P$.

- If N is a leaf node: Let $j=\operatorname{att}(N)$. If j is in A_{i} and $m_{i, j}=\operatorname{val}(N)$, then

$$
\begin{aligned}
& \text { Decrypt } \operatorname{Node}\left(C T, \mathcal{D}_{i}, N\right) \\
& =\frac{e\left(D_{i, j}, \overline{v_{i, j}} C_{N}\right)}{\left.e\left(D_{i, j}^{\prime}, C_{N}^{\prime}\right) e\left(D_{i, j}^{\prime \prime}\right), C_{N}\right)} \\
& =\frac{e\left(v_{i, j}^{-1}\left(r_{i} P+r_{i, j} h_{i, j} P\right),\left(t_{i} v_{j}^{-1} v_{i, j}+v_{i, j}\right) q_{N}(0) v_{j} Q\right)}{e\left(t_{i} r_{i, j} P, q_{N}(0) h_{i, j} Q\right) e\left(r_{i} P+r_{i, j} h_{i, j} P, v_{j} q_{N}(0) Q\right)} \\
& =\frac{e\left(v_{i, j}^{-1}\left(r_{i} P+r_{i, j} h_{i, j} P\right), t_{i} v_{i, j} q_{N}(0) Q+v_{i, j} v_{j} q_{N}(0) Q\right)}{e\left(t_{i} r_{i, j} P, q_{N}(0) h_{i, j} Q\right) e\left(r_{i} P+r_{i, j} h_{i, j} P, v_{j} q_{N}(0) Q\right)} \\
& =\frac{e\left(r_{i} P+r_{i, j} h_{i, j} P, t_{i} q_{N}(0) Q\right) e\left(r_{i} P+r_{i, j} h_{i, j} P, v_{j} q_{N}(0) Q\right)}{e\left(t_{i} r_{i, j} P, q_{N}(0) h_{i, j} Q\right) e\left(r_{i} P+r_{i, j} h_{i, j} P, v_{j} q_{N}(0) Q\right)} \\
& =\frac{e\left(r_{i} P, t_{i} q_{N}(0) Q\right) e\left(r_{i, j} h_{i, j} P, t_{i} q_{N}(0) Q\right)}{e\left(t_{i} r_{i, j} P, q_{N}(0) h_{i, j} Q\right)} \\
& =e(P, Q)^{t_{i} r_{i} q_{N}(0)} .
\end{aligned}
$$

Otherwise, $\operatorname{Decrypt} \operatorname{Node}\left(C T, \mathcal{D}_{i}, N\right)=\perp$.

The Proposed Scheme

- If N is an internal node:
(1) For each child N_{c} of $N, F_{N_{c}}=\operatorname{DecryptNode}\left(C T, \mathcal{D}_{i}, N_{c}\right)$.
(2) Let \mathcal{I}_{c} be a k_{N}-sized set containing the indexes of the child nodes N_{c} 's such that $F_{N_{c}} \neq \perp$ for each N_{c}. Return

$$
\begin{aligned}
F_{N} & =\prod_{\forall \operatorname{index}\left(N_{c}\right)=z \in \mathcal{I}_{c}} F_{N_{c}}^{\Delta_{z}, \mathcal{I}_{c}(0)} \\
& =\prod_{\forall \operatorname{index}\left(N_{c}\right)=z \in \mathcal{I}_{c}}\left(e(P, Q)^{t_{i} r_{i} q_{N_{c}}(0)}\right)^{\Delta_{z, \mathcal{I}_{c}}(0)} \\
& =\prod_{\forall \operatorname{index}\left(N_{c}\right)=z \in \mathcal{I}_{c}}\left(e(P, Q)^{t_{i} r_{i} q_{p a r e n t}\left(N_{c}\right)(z)}\right)^{\Delta_{z, \mathcal{I}_{c}}(0)} \\
& =\prod_{\forall \text { index }\left(N_{c}\right)=z \in \mathcal{I}_{c}}\left(e(P, Q)^{t_{i} r_{i} q_{N}(z)}\right)^{\Delta_{z, \mathcal{I}_{c}}(0)} \\
& =e(P, Q)^{t_{i} r_{i} q_{N}(0)}
\end{aligned}
$$

(3) If no such set exists, N is not satisfied and return $F_{N}=\perp$.

The Proposed Scheme

Decryption

Call DecryptNode $\left(C T, \mathcal{D}_{i}, R\right)$:

$$
\begin{aligned}
A & =\operatorname{Decrypt} \operatorname{Node}\left(C T, \mathcal{D}_{i}, R\right) \\
& =e(P, Q)^{t_{i} r_{i} q_{R}(0)} \\
& =e(P, Q)^{t_{i} r_{i} s}
\end{aligned}
$$

Compute the session key K :

$$
\begin{aligned}
\frac{A \cdot \tilde{C}}{e\left(C, D_{i}\right) \cdot C^{\prime}} & =\frac{e(P, Q)^{t_{i} r_{i} s} \cdot e(P, Q)^{\alpha \beta s} K}{e\left(s P,\left(\alpha+t_{i} r_{i}\right) Q\right) \cdot e(P, Q)^{\alpha(\beta-1) s}} \\
& =\frac{e(P, Q)^{\alpha \beta s} \cdot e(P, Q)^{t_{i} r_{i} s} K}{e(P, Q)^{\left(\alpha s+\alpha(\beta-1) s+t_{i} r_{i} s\right)}} \\
& =\frac{e(P, Q)^{\alpha \beta s+t_{i} r_{i} s} K}{e(P, Q)^{\alpha \beta s+t_{i} r_{i} s}} \\
& =K
\end{aligned}
$$

The decryption procedure will return \perp if $C_{r} \neq H(K \| \bar{M}) P$. Otherwise, it returns M by computing $M=D_{K}(\bar{M})$.

- The Enrollment algorithm:
(1) Expandability
- The Leaving and Updating algorithms:
(1) Revocability
(2) Renewability
(3) Independence

Theorem

The proposed $C P-A B E-D M$ scheme is $C C A_{D M}$ secure under the DBDH assumption in a standard model.

The Decisional Bilinear Diffie-Hellman Problem
$\left(\mathbb{G}_{0}, \mathbb{G}_{1}, \mathbb{G}_{T}, q, P, Q, a P, b P, c P, a Q, b Q, c Q, Z\right)$

$$
\begin{aligned}
& P K=\left(\mathbb{G}_{0}, \mathbb{G}_{1}, \mathbb{G}_{T}, e, H, P, Q, U=e(a P, b Q-Q), e(a P, b Q)\right) \\
& M K=a Q
\end{aligned}
$$

Queries / Responses

Enrollment $\left(S_{i}\right)$
$\operatorname{Leaving}(i) \quad b^{\prime \prime} \in_{R}\{0,1\}$
$\operatorname{Updating}(i, j, m)$
Decryption $^{\prime}(C T)$
\mathcal{C} solves the Decisional Bilinear Diffie-Hellman problem with non-negligible advantage.

If $b^{\prime \prime \prime}=b^{\prime \prime}, \mathcal{C}$ outputs $b^{\prime}=1$, otherwise $b^{\prime}=0$

```
\(\operatorname{Cipher}\left(\mathcal{T}, N, \mathbb{C}_{0}\right)\)
1. Locate the node \(N\) in \(\mathcal{T}\);
2. If ( \(N\) is a leaf node ) \{
3. \(\quad\) Set \(j=\operatorname{att}(N)\) and \(m=\operatorname{val}(N)\);
4. Compute \(u_{m}=H(m)\);
5. Compute \(C_{N}=v_{j} \mathbb{C}_{0} ; / / v_{j}=\prod_{\forall i \in \mathcal{U}} v_{i, j}\)
6. Compute \(C_{N}^{\prime}=u_{m} \mathbb{C}_{0}\);
7. Store \(\left(C_{N}, C_{N}^{\prime}\right)\) in \(\left.\mathcal{L}_{C} ;\right\}\)
8. Else \{
9. Randomly select \(k_{N}-1\) elements \(c_{i} \in \mathbb{Z}_{q}^{*}\);
10. For each child \(N_{C}\) of the node \(N\) \{
11. \(\quad\) Set \(x=\operatorname{index}\left(N_{C}\right)\);
12. If \(\left(k_{N}-1>0\right)\) \{
13. \(\quad\) Compute \(\left.\overline{\mathbb{C}_{0}}=\mathbb{C}_{0}+\sum_{i=1}^{k_{N}-1} c_{i} x^{i} Q ;\right\}\)
14. Else \{
15. \(\quad\) Set \(\left.\overline{\mathbb{C}_{0}}=\mathbb{C}_{0} ;\right\}\)
16. Call Cipher \(\left.\left.\left(\mathcal{T}, N_{C}, \overline{\mathbb{C}_{0}}\right) ;\right\}\right\}\)
```

Initially, \mathcal{C} calls $\operatorname{Cipher}\left(\mathcal{T}^{*}, R, c Q\right)$.

Comparisons

- Dynamic Membership: It allows an ABE system to manage member enrollment, attribute updating, and member revocation efficiently.
- Sender Updating: A sender must grab the newest public information before she/he encrypts a message.
- Receiver Updating: A receiver must interact with the system to refresh her/his private key or retrieve the newest public information before she/he decrypts a ciphertext.
- No Private Key Refreshment: Members do not have to interact with the system to refresh their private keys when the membership or any of the members' attributes has been changed.
- Arbitrary-State Attribute: The domain of each attribute is a variable-length string, not a binary bit only.

Feature Comparisons

Scheme	Dynamic Membership		ASA	Special Feature
	Updating	Leaving		
Ours	Yes	Yes	Yes	No Private Key Refreshment
$[4]$	No	No	Yes	Direct and Indirect Revocation
$[5]$	No	Yes	No	Multi-Authority
$[12]$	No	No	No	Dual Policy
$[13]$	No	No	No	Multi-Authority
$[15]$	No	No	No	Multi-Authority
$[7]$	No	No	No	Full Logic Expression
$[8]$	No	No	No	Key Delegation
$[9]$	No	No	No	Multi-Authority
$[10]$	No	No	No	

Feature Comparisons

Scheme	Dynamic Membership		ASA	Special Feature
	Updating	Leaving		
Ours	Yes	Yes	Yes	No Private Key Refreshment
$[11]$	No	No	No	-
$[14]$	No	No	No	-
$[25]$	No	No	No	Full Logic Expression
$[26]$	No	No	No	
$[27]$	No	No	No	Multi-Authority
$[28]$	No	No	No	Multi-Authority
$[29]$	No	No	No	Attribute Hierarchy
$[30]$	No	No	Yes	Unbounded Attribute
$[31]$	No	No	No	Constant Ciphertext Size
$[32]$	No	No	No	Multi-Authority
$[33]$	No	Yes	No	
ASA: Arbitrary-State Attribute				

Notations for Performance Comparisons

Notation	Meaning
n	the number of the members in an ABE system
m	the number of the attributes provided in an ABE system
m_{c}	the number of attributes associated to a ciphertext
m_{d}	the maximum of \mid Cover $(R) \mid$ where R is the set of revoked users and $m_{d}<m$
m_{u}	the number of a user's attributes
m_{a}	the number of authorities
$m_{o r}$	a ciphertext
$m_{a n d}$	the number of the AND conjunction attributes of the access rule associated to a ciphertext
$m_{n o t}$	the number of the NOT conjunction attributes of the access rule associated to a ciphertext
DR, IR	Direct Mode and Indirect Mode
SA, OA	Subject Attribute and Objected Attribute

Performance Comparisons: Computation Cost

	Encryption Cost of the Sender	Decryption Cost of the Receiver	The Necessary Computation Cost of the Center		
			Enrollment	Updating	Leaving
Ours	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m+m_{u}\right)$	$\mathcal{O}\left(m+m_{u}\right)$	$\mathcal{O}(m)$
[4]	$\mathcal{O}\left(m \times m_{c}+m_{d}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m \times m_{p} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{p} \times m_{u} \times m\right)$	DR: $\mathcal{O}(1)$, IR $\mathcal{O}\left(n \times m_{d}^{2}\right)$
[5]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$	$\mathcal{O}(1)$
[12]	$\mathcal{O}\left(m \times m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m \times m_{u}\right)$	SA: $\mathcal{O}(n \times m), \mathrm{DA}: \mathcal{O}\left(n \times m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$
[13]	$\mathcal{O}\left(m_{\text {and }} \times m_{\text {or }}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n \times m_{u}\right)$
[15]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m^{2}\right)$	$\mathcal{O}\left(n \times m^{2}\right)$	$\mathcal{O}\left(n \times m^{2}\right)$
[7]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}+m_{u}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[8]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}(n \times m)$	$\mathcal{O}(n \times m)$
[9]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c} \times m_{L}\right)$	$\mathcal{O}(m)$	$\mathcal{O}(n)$	$\mathcal{O}(n \times m)$
[10]	$\mathcal{O}\left(m_{\text {and }}+m_{n o t}\right)$	$\mathcal{O}\left(m_{u}+m_{n o t}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[11]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n \times m_{u}\right)$
[14]	$\mathcal{O}\left(m \times m_{c}+m_{c}^{2}\right)$	$\mathcal{O}\left(m \times m_{c} m_{c}^{2}\right)$	$\mathcal{O}\left(m_{u}^{2}\right)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n \times m_{u}^{2}\right)$
[25]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[26]	$\mathcal{O}(m)$	$\mathcal{O}\left(m^{2}\right)$	$\mathcal{O}(m)$	$\mathcal{O}(n \times m)$	$\mathcal{O}(n \times m)$
[27]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c} \times m_{u}\right)$	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$
[28]	$\mathcal{O}\left(m_{a}+m_{c}\right)$	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$
[29]	$\mathcal{O}\left(m_{c}^{2}\right)$	$\mathcal{O}\left(m_{c}^{2}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[30]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[31]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$
[32]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}^{2}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[33]	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$

Performance Comparisons: Storage and Communication

Cost

	Size of Private Key	Size of Ciphertext	Size of Public Parameters	The Communication Cost (between the center and a user)		
				Enrollment	Updating	Leaving
Ours	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(n \times m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}(1)$
[4]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(n+m)$	$\mathcal{O}\left(m_{u} \times m_{p}\right)$	$\mathcal{O}\left(n \times m_{u} \times m_{p}\right)$	DR: $\mathcal{O}(1)$, IR: $\mathcal{O}\left(m_{d}\right)$
[5]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(n+m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}(1)$
[12]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(n+m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[13]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(n+m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[15]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}\left(m^{2}\right)$	$\mathcal{O}\left(m^{2}\right)$	$\mathcal{O}\left(n \times m^{2}\right)$	$\mathcal{O}\left(n \times m^{2}\right)$
[7]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[8]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(1)$	$\mathcal{O}(m)$	$\mathcal{O}(n \times m)$	$\mathcal{O}(n \times m)$
[9]	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[10]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{\text {and }}+m_{\text {or }}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[11]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}(n)$	$\mathcal{O}\left(n \times m_{u}\right)$
[14]	$\mathcal{O}\left(m_{L}^{2} \times m_{u}\right)$	$\mathcal{O}\left(m_{L} \times m_{c}\right)$	$\mathcal{O}\left(m \times m_{L}\right)$	$\mathcal{O}\left(m_{L}^{2} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{L}\right)$	$\mathcal{O}\left(n \times m_{L} \times m_{u}\right)$
[25]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[26]	$\mathcal{O}(m)$	$\mathcal{O}(m)$	$\mathcal{O}(m)$	$\mathcal{O}(m)$	$\mathcal{O}(n \times m)$	$\mathcal{O}(n \times m)$
[27]	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(m_{a} \times m_{c}\right)$	$\mathcal{O}\left(m \times m_{a}\right)$	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$
[28]	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(m_{a} \times m_{c}\right)$	$\mathcal{O}\left(n \times m_{a} \times m\right)$	$\mathcal{O}\left(m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{a} \times m_{u}\right)$
[29]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[30]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(1)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[31]	$\mathcal{O}\left(m \times m_{u}\right)$	$\mathcal{O}(1)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$	$\mathcal{O}\left(n \times m \times m_{u}\right)$
[32]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(m_{c}\right)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$
[33]	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}(m)$	$\mathcal{O}(m)$	$\mathcal{O}\left(m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$	$\mathcal{O}\left(n \times m_{u}\right)$

Conclusions

- An attribute-based encryption scheme with dynamic membership has been proposed.
- This is the first ABE scheme which can support arbitrary-state attributes and attribute (and value) updating with Sender Updating only.
- It has been formally proved to be CCA secure under a standard model.

Q\&A

